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The spreading of one- and two-component polymer nanodroplets is studied using molecular dynamics
simulation in a cylindrical geometry. The droplets consist of polymer chains of length 10, 40, and 100
monomers per chain described by the bead-spring model spreading on a flat surface with a surface-coupled
Langevin thermostat. Each droplet contains,350 000 monomers. The dynamics of the individual components
of each droplet is analyzed and compared to the dynamics of single-component droplets for the spreading rates
of the precursor foot and bulk droplet, the time evolution of the contact angle, and the velocity distribution
inside the droplet. We derive spreading models for the cylindrical geometry analogous to the kinetic and
hydrodynamic models previously developed for the spherical geometry, and show that hydrodynamic behavior
is observed at earlier times for the cylindrical geometry. The contact radius is predicted to scale asrstd, t1/5

from the kinetic model andrstd, t1/7 for the hydrodynamic model in the cylindrical geometry.
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I. INTRODUCTION

Practical applications of the spreading of a liquid on a
solid are prevalent in the lubrication, coatings, and printing
industries, to name a few. Knowledge of the rates of spread-
ing and equilibrium configurations of these systems is crucial
for improving their performance. Extensive experimental,
theoretical, and computational work has been undertaken to
better understand the interaction between a liquid and solid
in contact. Most frequently, the liquids studied are oligomers
or polymers in order to remove the influence of evaporation
and condensation on the droplet spreading dynamics.

The total energy dissipation in a spreading droplet can be
represented as a sum of three different components: one due
to the hydrodynamic flow in the bulk of the droplet, one due
to the viscous dissipation in the precursor foot, and one due
to the adsorption and desorption of molecules to the solid
surface in the vicinity of the contact line[1]. Experimental
measurements[2,3] of microscopic droplets compare well
with the hydrodynamic model of droplet spreading[4–7],
indicating that hydrodynamic energy dissipation is an impor-
tant feature of droplet spreading. To date, however, simula-
tions [8–16] of spherical droplets have been unable to ap-
proach the droplet size and time duration required for
hydrodynamic flow to be relevant.

Although simulations of spreading droplets typically con-
sider a three-dimensional spreading hemisphere, there are
computational advantages for considering a two-dimensional
hemicylinder[17,18]. The symmetry along the cylinder axis
allows periodic boundary conditions to be applied in one
direction, and a larger droplet radiusr can be simulated with
fewer atoms since the droplet volume scales asr2 in the
cylindrical geometry instead ofr3 for the spherical geometry.
With larger droplet sizes, this enables us to simulate more
viscous systems by including polymer chains of lengthN
=100 in droplet spreading simulations.

It has been claimed that hydrodynamic dissipation is
dominant for small contact angles and nonhydrodynamic dis-
sipation is dominant for relatively large contact angles[19].
This is reinforced by the fact that for spherical droplets,
spreading models have a kinetic dissipation term that is lin-

ear in the instantaneous contact radius, while the hydrody-
namic dissipation term has a logarithmic dependence on the
instantaneous contact radius[2,3,20]. We show here that for
a cylindrical geometry, the hydrodynamic dissipation term is
linearly dependent on the contact radius, which suggests that
hydrodynamic flow could contribute to the dissipation at ear-
lier times for a cylindrical geometry than for the spherical
geometry. Our simulations show that this is indeed the case.
We also show that therstd, t1/10 scaling of Tanner’s spread-
ing law and therstd, t1/7 prediction of molecular-kinetic
theory for spherical droplets becomerstd, t1/7 and rstd
, t1/5, respectively, in the cylindrical geometry.

Even though many of the liquids used in surface wetting
applications are mixtures or suspensions, most of the re-
search has focused on single-component liquids. Some ex-
perimental[21–24] and theoretical[25,26] work has been
done on binary droplets focusing mainly on the equilibrium
behavior. Simulations of binary droplets containing from
4 000 [27–30] to 25 000 [31] monomers have been per-
formed, but larger system sizes are needed to adequately
model the spreading dynamics.

In this paper, we present molecular dynamics(MD) simu-
lations of coarse-grained models of one- and two-component
polymer droplets for chain lengthN=10, 40, and 100. These
chain lengths are chosen since they have a very low vapor
pressure and the droplet spreading is not influenced by va-
porization and condensation. We analyze the dynamics of the
components of each droplet and compare the spreading rates
of two-component droplets to their single-component ana-
logs. We derive the equations for the rate of change of con-
tact angle and radius for the cylindrical geometry based on
kinetic [32–34] and hydrodynamic models[3,4,35], and we
use these models to extract physical parameters for each
system.

The paper is organized as follows. Section II describes the
details of the molecular dynamics simulations and the appli-
cation of the Langevin thermostat to the monomers near the
substrate. It also describes the methods used to analyze the
simulation results. Section III presents the droplet spreading
models for the cylindrical geometry. Section IV compares
the spreading behavior of monodispersed droplets in the
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spherical and cylindrical geometry, droplets of different
chain lengths, and binary mixtures. The velocity distributions
of both homogeneous and binary droplets are analyzed in
Sec. V and conclusions are presented in Sec. VI.

II. SIMULATION DETAILS

A. Potentials and thermostat

Molecular dynamics(MD) simulations are performed us-
ing a coarse-grained model for the polymer chains in which
the polymer is represented by spherical beads of massm
attached by springs. We use a truncated Lennard-Jones(LJ)
potential to describe the interaction between the monomers.
The LJ potential is given by

ULJsRd = 54«FSs

r
D12

− Ss

r
D6G r ø rc

0 r . rc,

s1d

where« ands are the LJ units of energy and length and the
cutoff is set torc=2.5 s. The monomer-monomer interaction
« is used as the reference and all monomers have the same
diameters. Although in this paper for the binary mixtures
we vary only the chain length, in future work we will vary
the relative interaction strength. For bonded monomers, we
apply an additional potential where each bond is described
by the finite extensible nonlinear elastic(FENE) potential
[36] with k=30 « andR0=1.5 s.

Droplets composed of polymer chains of length N=10,
40, 100, or 10/40 and 10/100 mixtures of equal mole frac-
tion of monomers are generated by equilibrating a melt of
the polymer containing 500 000 monomers atP.0 between
two parallel plates in thez direction with periodic boundary
conditions in the other two directions. The distance between
the platesLz.90 s. For the cylindrical geometry, the width
of the simulation cell in they direction is chosen to be wide
enough such that there are no interactions between a chain
and its periodic image. The larger the width, the better the
statistical averaging of contact angle and radius measure-
ments of the droplets. We found that bothLy=40 and 60s
give results with reasonable uncertainty in these measure-
ments. For the spherical droplet, the dimensionsLx=Ly. The
cylindrical droplets were constructed by removing all chains
with centers outside of a hemicylinder of radiusR0=80 s in
the xz plane andLy=40 s, which resulted in droplets con-
taining ,350 000 monomers. ForR0=50 s and Ly=60 s,
the droplets contained,200 000 monomers. Hemispherical
droplets were constructed in a similar manner, with initial
radii ,48 s, resulting in a droplet also of,200 000 mono-
mers. The droplets were then placed above a substrate which
initially has an interaction strength chosen so that the droplet
equilibrates with a contact angle near 90°. This is necessary
since the method of construction of the drop leaves some
segments extending into the vapor phase. These dangling
chain segments quickly coalesce with the droplet after a
short equilibration run. Hemispheres and hemicylinders were
chosen over spheres and cylinders to avoid the substantial
simulation time required for the isotropic droplet to transi-
tion to a cap geometry[8]. All of the droplets studied here

are large enough to avoid the equilibrium contact angle de-
pendence on droplet size observed for smaller system sizes
[8].

The substrate is modeled as a flat surface with interactions
between the surface and the monomers in the droplet at a
distancez from the surface modeled using the integrated LJ
potential with the cutoff set tozc=2.2 s. It was found previ-
ously [8] that with the proper choice of thermostat, the simu-
lations using a flat surface exhibit the same behavior as a
realistic atomic substrate with greater computational effi-
ciency.

We apply the Langevin thermostat using the same ap-
proach as in our earlier paper[8] to provide a realistic rep-
resentation of the transfer of energy in the droplet. The
Langevin thermostat simulates a heat bath by adding Gauss-
ian white-noise and friction terms to the equation of motion

mi r̈ i = − DUi − migLr i + W istd, s2d

wheremi is the mass of monomeri, gL is the friction param-
eter for the Langevin thermostat, −DUi is the force acting on
monomeri due to the potentials defined above, andW istd is
a Gaussian white-noise term. Coupling all of the monomers
to the Langevin thermostat would have the unphysical effect
of screening the hydrodynamic interactions in the droplet
and not damping the monomers near the surface stronger
than those in the bulk. To overcome this, we use a Langevin
coupling term with a damping rate that decreases exponen-
tially away from the substrate[37]. We choose the form
gLszd=gL

s expss−zd, wheregL
s is the surface Langevin cou-

pling. We generally use values ofgL
s =10.0t−1 and 3.0t−1

for «w=2.0 « and 3.0«, respectively, based on earlier work
[8] matching the diffusion constant of the precursor foot for
flat and atomistic substrates. The largergL

s corresponds to an
atomistic substrate with larger corrugation and hence larger
dissipation and slower diffusion near the substrate.

The equations of motion are integrated using a velocity-
Verlet algorithm. We use a time step ofDt=0.01t, where
t=ssm/«d1/2. The simulations are performed at a tempera-
tureT=« /kB using theLAMMPS code[38]. Most of the simu-
lations were run on 64 to 100 processors of Sandia’s ICC
Intel Xeon cluster. One million steps for a wetting drop of
350 000 monomers takes 24 to 86 h on 64 processors de-
pending on the radius of the droplet.

B. Analysis details

For all of the simulations presented here, we extract the
instantaneous contact radiusrstd and contact angleustd every
400 t. The contact radius is calculated by defining a one-
dimensional radial distribution function,gsrd=rsrd /r, based
on every monomer within 1.5s of the surface, wherersrd is
the local density at a distancer from the center of mass of
the droplet andr is the integral ofrsrd over the entire sur-
face. The contact radius is defined as the distancer at which
gsrd=0.98. The same calculation is used to obtain the droplet
radius for ten slices of the droplet at incremental heights
every 1.5s from the surface. Fitting a line to the resulting
points gives the instantaneous contact angle. For simulations
that exhibit a precursor foot, the monomers within 4.5s of
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the surface are ignored in the contact angle calculation.
Fitting the spreading models to the contact angle and con-

tact radius data requires knowledge of both the surface ten-
sion and viscosity. The surface tension is obtained by simu-
lating the polymer melt in a slab geometry so that there are
two surfaces perpendicular to thez direction. ForNù40 and
all blends, the melt contains 200 000 monomers and each
surface has a cross-sectional area of 4900s2. For shorter
chain lengths, the melts contain 100 000 monomers and each
surface has a cross-sectional area of 2500s2. After the sys-
tem equilibrates, the surface tension is calculated from the
parallel and perpendicular components of the pressure tensor
via [39]

g = 1
2E

0

Lz

fp'szd − piszdgdz. s3d

The driving force for the spontaneous spreading of a droplet
is the difference in surface tension at each interface. Since
the liquid/vapor surface tensiong is dependent on the chain
length, the spreading rate is as well. Figure 1 shows a plot of
g for droplets of several chain lengths obtained from MD
simulation. The data fit the experimentally[40] observed
N−2/3 molecular weight dependence very well and provide a
means to both extrapolate values ofg for large molecular
weights and estimate the change in spreading rate for differ-
ent chain lengths.

To determine the composition dependence of the surface
tension of the binary droplets, we equilibrate blends ofN
=40 with N=5 and withN=10 at three blend compositions
as shown in Fig. 2, andN=100 withN=10 at a composition
x100=0.5. This allows us to compare the cases where there is
a large(5/40 system) or a moderate difference(10/40 sys-
tem) in the surface tension of the pure components. Note that
the surface tension shown in Fig. 2 is not a simple mean-field
(i.e., linear) function of the monomer fraction, as the fully
equilibrated surface composition consists of almost fully
shorter chains.

The viscosity is calculated from the equilibrium fluctua-
tions of the off-diagonal components of the stress tensor[41]
obtained from polymer melt simulations atT=« /kB with the

bulk pressureP.0 without tail corrections[8]. We do not
include the tail corrections to the pressure in order to match
the system of the spreading droplet. These simulations are
run up to 84 000t. The autocorrelation function of each off-
diagonal component of the stress tensor is calculated using
the Numerical Recipesroutine,CORREL [42]. The autocorre-
lation functions are averaged to improve statistical uncer-
tainty. The results forg and h are also summarized in
Table I.

The viscosity of each blend is obtained in the same man-
ner as the pure components. The surface tension and viscos-
ity for each blend is given in Table II. The surface tensions of
the mixtures are closer to that of the shorter chains since they
dominate the liquid/vapor interface in the equilibrated sys-
tem. However, the viscosity of the mixture is more strongly
influenced by the longer chains.

III. CYLINDRICAL GEOMETRY DROPLET
SPREADING MODELS

The droplet is modeled as a cylindrical cap as shown by
the hatched region in Fig. 3. Here, the droplet volume is
defined as the cap of heighth and width 2r of the cylinder
with radiusR and lengthL. The cap height can be expressed
in terms of the contact angle,u, as

h = r
1 − cossud

sinsud
. s4d

Using the definition for the area of a circular segment,A
= 1

2R2s2u−sin 2ud, the radius of the cap can be written in
terms ofu and differentiated to give

dr

dt
= S A

u − sin u cosu
D1/2Scosu −

sin3 u

u − sin u cosu
Ddu

dt
.

s5d

The free energy is determined by integrating the surface
tensions of the liquid/vapor, solid/vapor, and solid/liquid in-
terfaces over the areas of each interface. For the cylindrical
cap geometry shown in Fig. 3, this is given by

FIG. 1. Molecular weight dependence of the liquid/vapor sur-
face tension forT=« /kB. The solid line is a fit to the experimentally
observedN−2/3 dependence.

FIG. 2. Surface tension of binary blends ofN=40 polymers with
N=5 polymerss+d and N=10 polymersshd as a function of the
bulk mole fractionx40 of monomers onN=40 chains.
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Fhrstdj = 2rstdLsgSL− gSVd + 2gLE
0

rstd

dxF1

+ S ] h8sx,td
] x

D2G1/2

, s6d

whereg, gSV, andgSL are the liquid/vapor, solid/vapor, and
solid/liquid surface tensions, respectively. The height of the
cylindrical cap in terms of the cap dimensions is given by

h8sx,td =
rstd

sin u
F1 −Sx2sin2 u

rstd2 D−1/2

− cosuG . s7d

Combining Eqs.(6) and (7) and differentiating gives

] Fhrstdj
] rstd

= 2LgS u

sin u
−

u0

sin u0
D . s8d

Using the standard mechanical description of dissipative
system dynamics, the dissipation function can be represented
as

] Thrstd; ṙstdj
] ṙstd

=
] Fhrstdj

] rstd
, s9d

whereT is the dissipation function[1,43], which we consider

to be composed of a kinetic componentTṠl and a hydrody-

namic componentTṠw. The kinetic dissipation term, due to
molecular adsorption near the contact line, follows the ki-
netic model introduced by Eyring and co-workers[32] and
applied to spreading of a spherical droplet by Blake and
Haynes[33,34]. In the kinetic model, the liquid molecules
jump between surface sites separated by a distancel with a
frequencyK. For the spreading cylinder, the velocity of the

contact line to first order is obtained from Eq.(8) as

ṙstd =
2g

z0
S u

sin u
−

u0

sin u0
D , s10d

where the friction coefficientz0;DnkBT/Kl. Here, Dn is
the density of sites on the solid surface. Combining Eqs.
(8)–(10), we find that the dissipation term due to the surface
kinetics is

To
l

˙

= z0ṙstd2L/2. s11d

The hydrodynamic dissipation term for the spreading
droplet is obtained by solving the equations of motion and
continuity. For the spherical droplet, Seaver and Berg[35]
found that approximating the spherical cap as a cylindrical
disk of the same volume gave results that differed from the
rigorous derivation by Cox[4] only by insignificant numeri-
cal factors. We apply the same approximation here, treating
the hydrodynamics of the cylinder as identical to that of a
rectangular box as shown in Fig. 4. Following de Ruijteret
al. [3], we set the velocity of the upper part of the leading
edge to the droplet spreading velocity,vxfx=rstd ,z=h8g
= ṙstd. With this boundary condition, the velocity profile is
simply

vxsx,zd =
z

h8sx,td
ṙstd. s12d

The hydrodynamic dissipationSw is defined as

To
w

= hE
V

dVS ] vx

] z
D2

. s13d

Combining Eqs.(12) and (13) and integrating gives

TABLE I. Bulk properties of bead-spring chains obtained from MD simulation and model fit parameters forT=« /kB, P.0. The
Lennard-Jones units are given in parenthesis.

Kinetic Hydro Combined

N «ws«d gL
sst−1d rss−3d gs« /s2d hsm/tsd z0sm/tsd assd z0sm/tsd assd xkin

2 xhydro
2 xcomb

2

10 2.0 10.0 0.869 0.84±0.02 11.1±0.4 72.2 30.3 124 190 .0014 .0049 .0012

10 3.0 3.0 0.869 0.84±0.02 11.1±0.4 37.4 60.4 63.2 147 .0029 .0045 .0012

40 2.0 10.0 0.886 0.94±0.02 41.7±1.4 141 58.2 339 181 .0008 .0066 .0011

40 3.0 3.0 0.886 0.94±0.02 41.7±1.4 59.9 73.6 160 140 .0037 .011 .0018

100 2.0 10.0 0.892 0.96±0.02 132±2 180 41.2 155 51.8 .0015 .0009 .0009

100 3.0 3.0 0.892 0.96±0.02 132±2 82.4 70.7 417 124 .0057 .013 .0019

100 2.0 3.0 0.892 0.96±0.02 132±2 105 65.0 678 155 .0012 .016 .0022

100 3.0 10.0 0.892 0.96±0.02 132±2 167 61.2 126 77.3 .0057 .0005 .0004

TABLE II. Bulk properties and model fit parameters for binary droplets. The Lennard-Jones units are given in parentheses.

Kinetic Hydro Combined

N «ws«d gL
sst−1d rss−3d gs« /s2d hsm/tsd z0sm/tsd assd z0sm/tsd assd xkin

2 xhydro
2 xcomb

2

10/40 2.0 10.0 0.8800 0.885±0.02 34.8±1.4 109 58.9 259 178 0.0009 0.0059 0.0006

10/40 3.0 3.0 0.8800 0.885±0.02 34.8±1.4 45.5 73.9 168 160 0.0027 0.015 0.0024

10/100 3.0 3.0 0.8830 0.90±0.02 67.2±2.4 52.8 75.7 158 127 0.0061 0.015 0.0023
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To
w

= Lhṙstd2srstd − ad/h8, s14d

where the parametera has the same meaning as in Ref.[3];
it is a minimum radius cutoff applied to avoid the singularity
in the velocity at thez axis. Note that the logarithmic depen-
dence ofTow on rstd for the case of a spreading sphere[3]
becomes a linear dependence for the case of a spreading
cylinder. Since the rectangular box and the cylindrical cap
have the same volume, we can rewrite Eq.(14) in terms of
the cylinder dimensions

To
w

= 2Lhṙstd2 sin2 usrstd − ad
rstdsu − sin u cosud

. s15d

For the spherical geometry, the hydrodynamic dissipation
term has been derived previously[3]

To
w

= 6prstdhf„ustd…ṙstd2lnfrstd/ag, s16d

wheref(ustd) is defined as

f„ustd… =
f1 + cosustdgsin ustd

f1 − cosustdgf2 + cosustdg
. s17d

We construct a combined kinetic and hydrodynamic
model in a manner analogous to de Ruijteret al. by combin-
ing Eqs.(8)–(11) and (15)

ṙstd =
g

z0

2
+

2hsrstd − adsin2 u

rstdsu − sin u cosud

S u

sin u
−

u0

sin u0
D . s18d

Rewriting this in terms of the contact angleu using Eq.(5)
gives

du

dt
= Su − sin u cosu

A
D1/2Scosu

−
sin3 u

u − sin u cosu
D−1 gS u

sin u
−

u0

sin u0
D

z0

2
+

2hsrstd − adsin2u

rstdsu − sin u cosud

.

s19d

This can be compared to the analogous expressions for a
spherical droplet[2,3]

ṙstd =
gscosu0 − cosud

z0 + 6hffustdglnS rstd
a
D , s20d

du

dt
= − S p

3V
D1/3s2 − 3 cosu + cos3 ud4/3

s1 − cosud2

3
gscosu0 − cosud

z0 + 6hffustdglnS rstd
a
D . s21d

The kinetic model is obtained by settingh=0 in Eqs.
(18)–(21), and the hydrodynamic model is obtained by set-
ting z0=0. For the kinetic model, the asymptotic solutions of
Eqs.(18) and (19) give

ustd , s2Ad1/5S5gt

6z0
D−2/5

, s22d

rstd , 2s2Ad2/5S5gt

6z0
D1/5

, s23d

as compared toustd, t−3/7 and rstd, t−1/7 for the spherical
geometry. Similarly, the asymptotic solutions for the hydro-
dynamic model give

ustd , s2Ad1/7S 7gt

48h
D−2/7

, s24d

rstd , 2s2Ad3/7S 7gt

48h
D1/7

, s25d

as compared toustd, t−3/10 and rstd, t−1/10 for the spherical
geometry.

IV. RESULTS

A. Comparison to spherical geometry

For wetting droplets, the spreading is characterized by the
formation of a precursor foot of monolayer thickness that
advances ahead of the bulk of the droplet. The bulk region of
the droplet follows the precursor foot at a slower spreading
rate. This is demonstrated in Fig. 5, where the contact radius
of the foot and bulk regions is plotted as a function of time
for both the cylindrical and spherical geometries. These
droplets contain 20 000 chains ofN=10 with a substrate in-

FIG. 3. Diagram of the cylindrical cap.

FIG. 4. Rectangular representation of the cylindrical cap.
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teraction strength«w=2.0 «, which is in the fully wetting
regime for N=10. For the otherwise identical systems, the
radii of both regions of the cylindrical droplet increase faster
than those for the spherical droplet. This is a consequence of
the droplet spreading in one dimension in the cylindrical
geometry and two dimensions in the spherical geometry. The
precursor foot grows diffusively,r2std, t, in both cases. We
return to further discussion of the time dependence ofrstd in
Sec. IV C.

Figure 6 shows the time dependence of the contact angle
for the same system. For the contact angle, the cylindrical
and spherical geometries show a comparable spreading rate.
Since the droplet volume scales asr3 in the spherical geom-
etry andr2 in the cylindrical geometry, we favor the cylin-
drical geometry in order to simulate effectively larger drop-
lets with the same number of monomers.

Fits to the kinetic, hydrodynamic, and combined models
are performed by taking initial guess values for the indepen-
dent parameters and integrating the expression fordu /dt de-
fined in Eqs.(19) and (21) for the cylindrical and spherical
droplets, respectively. As these data are in the completely
wetting regime, the equilibrium contact angle is fixed atu0
=0°. The integration uses the fourth-order Runge-Kutta
method to generate a set of data,ucalcstd. The parameters are
varied using the downhill simplex method[42] until the dif-
ference between the model and simulation data,uucalcstd
−ustdu /ustd, is minimized. The error reported for each model
is calculated as

x2 =
1

No
i=1

N
uucalcstd − ustdu2

ustd
, s26d

whereN is the number of data points in each set of data.
For the data shown in Fig. 6, the hydrodynamic model

provides a more accurate, though still only approximate, fit
to the data in the cylindrical geometry. The hydrodynamic
cutoff a.38.1s for the spherical geometry and 25.3s for
the cylindrical geometry, indicating stronger hydrodynamic
dissipation in the cylindrical geometry. For comparison, the
friction coefficients obtained from the kinetic modelz0
=56.3m/ts for the spherical geometry and 56.4m/ts for
the cylindrical geometry are in excellent agreement.

B. Chain length dependence

The equilibrium contact angles for nonwetting droplets
are plotted as a function of the surface interaction strength in
Fig. 7. The variation of the surface tension with chain length,
shown in Fig. 1, causes a shift in the wetting transition in
terms of the surface interaction strength. The contact angles
for theN=10 andN=40 droplets are taken from earlier work
[8] on spherical droplets. The droplets are large enough to
eliminate any equilibrium contact angle dependence on the
droplet size[8]. Contact angles for theN=100 droplets are
from simulations containing 355 000 total monomers. Al-
though the chain length dependence is weak for small«w, the

FIG. 5. Radius of the precursor foot for the cylindrical(solid
line) and spherical(dashed line) geometries and of the bulk droplet
for the cylindrical(dotted line) and spherical(dash-dotted line) ge-
ometries. Both cylindrical and spherical droplets consist of 20 000
polymers of lengthN=10. The substrate interaction strength«w

=2.0 « is in the fully wetting regime forN=10, gL
s =10.0t−1.

FIG. 6. (a) Fit of the kinetic(solid line), hydrodynamic(dotted
line), and combined(dashed line) models to the contact angle data
for the cylindrical geometry obtained from MD simulations+d. (b)
Model fits for the equivalent droplet in the spherical geometry. Both
cylindrical and spherical droplets consist of 20 000 polymers of
lengthN=10. The substrate interaction strength«w=2.0 « is in the
fully wetting regime forN=10, gL

s =10.0t−1.

FIG. 7. Equilibrium contact angle as a function of surface inter-
action strength for polymer droplets composed ofN=10s+d, N
=40shd, andN=100sLd monomers per polymer.
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wetting transition is shifted to higher«w for larger chain
lengths due to the increase in the liquid vapor surface ten-
sion. The transition occurs near«w

c .1.75« for N=10 drop-
lets and increases to about«w

c .2.25« for N=100 droplets.
Hence, results shown for«w=3.0 « are in the completely
wetting regime for all chain lengths, while those for«w
=2.0 « are in the completely wetting regime only forN=10
and N=40. From Fig. 7, the equilibrium contact angle for
N=100,«w=2.0 « is u0.26°. The equilibrium contact angle
extracted from the kinetic model fit for this droplet isu0
.28°. For droplets in the completely wetting regime, the
models are fit using an equilibrium contact angle fixed at
u0=0°.

The fits to the simulation data for various chain lengths
for «w=2.0 « andgL

s =10.0t−1 are shown in Fig. 8(a). Figure
8(b) shows results for«w=3.0 « andgL

s =3.0 t−1. The fitting
parameters andx2 values for all of these droplets are listed in
Table I. Overall, the combined model produces the best fits
to the data, primarily due to the fact that it has two fitting
parameters while the other two models each have one. The
kinetic model also fits the data quite well in most cases,
which suggests that the combined model overspecifies the
droplet spreading behavior for these cases. This is reinforced
by the fact that the parameters extracted from the combined
model do not correspond well with the physical system. In
most cases, the hydrodynamic cutoffa obtained from the
combined model is larger than the droplet radius and the
friction coefficient is larger than that obtained from the ki-
netic model. Previously[8], the single-chain diffusion con-
stant was obtained from simulations of polymer melts and
the friction coefficient was extracted using the Rouse model
via D=kBT/mNzR. As for the spherical droplets, the friction
coefficient z0 obtained from the kinetic model was consis-
tently larger thanzR for all cases.

Although the hydrodynamic model performs better for the
cylindrical geometry than for the spherical geometry, and
gives values fora that are less than the droplet radius in
every case, it still provides the poorest fit to the data of the

three models. As seen from Fig. 8, the best fit to the hydro-
dynamic model is for the system with the highest viscosity,
N=100. To explore this point in greater detail, we ran two
additional systems,«w=2.0 « with gL

s =3.0 t−1 and «w
=3.0 « with gL

s =10.0t−1, for N=100. The comparison of the
fits of the three models to all of theN=100 systems is shown
in Fig. 9. Only for the droplets with the strongest surface
dissipation,gL

s =10.0t−1, does the hydrodynamic model fit
the data very well. The hydrodynamic model fit is very poor
for gL

s =3.0 t−1 regardless of the equilibrium contact angle.
The strong surface dissipation slows the surface adsorption
rate allowing the hydrodynamic behavior to develop in the
bulk region of the droplet. On an atomic substrate, this is
equivalent to increasing the surface corrugation. The com-
bined model gives fitting parameters that are comparable to
both the kinetic and hydrodynamic models only for the two
cases where hydrodynamics is important. It should be men-
tioned that the parameters obtained from the combined
model are more sensitive to the input parameters for theN
=100, gL

s =10.0t−1 systems. For these two systems, a 10%
change in the viscosity results in a 60% change inz0 and a
15% change ina for the combined model. For the other
systems, a 10% change in the viscosity results in a 7%
change inz0 and a 1% change ina on average. The kinetic
model fits the data better for«w=2.0 « than «w=3.0 «, pre-
sumably because the driving force is smaller since the initial
droplet is closer to its final equilibrium contact angle. How-
ever, unlike the combined model, the friction coefficients for
these two droplets are consistent with those for the other
droplets, so we consider the fit parameters to be accurate.

C. Binary droplets

For binary droplets, the behavior is complicated by the
interdiffusion of the two components. As the droplet spreads,
the component with the smaller surface tension gradually
diffuses to the droplet surface. This is evident in the profiles

FIG. 8. (a) Fit of the kinetic(solid line), hydrodynamic(dotted
line), and combined(dashed line) models to the contact angle data
for the cylindrical geometry obtained from MD simulation forN
=10s+d, N=40shd, and N=100sLd droplets for «w=2.0 «, gL

s

=10.0t−1. (b) Same as above with«w=3.0 «, gL
s =3.0 t−1. For clar-

ity, theN=10 andN=40 data sets have been shifted upward 60° and
30°, respectively.

FIG. 9. Fit of the kinetic(solid line), hydrodynamic(dotted
line), and combined(dashed line) models to the contact angle data
for the cylindrical geometry obtained from MD simulation forN
=100 with «w=2.0 «, gL

s =10.0t−1s+d, «w=2.0 «, gL
s =3.0 t−1shd,

«w=3.0 «, gL
s =10.0t−1snd, and «w=3.0 «, gL

s =3.0 t−1sLd. For
clarity, the first three data sets have been shifted upward by 60°,
40°, and 20°, respectively.
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of the binary droplet shown in Fig. 10. The droplet, com-
posed of an initial equimolar mixture of monomers belong-
ing to chains of lengthN=10 andN=40, is on a surface with
«w=2.0 «. Here, the precursor foot pulls ahead of the bulk
region as the droplet spontaneously wets the surface. The
composition of the precursor foot shows a slight enrichment
of the N=10 chains, ranging from 59% to 63% in the three
frames shown. For«w=3.0 «, no segregation in the precursor
foot is observed. This can be understood in terms of the
relative distance from the wetting transition for each of the
components. As shown in Fig. 7,N=40 is quite close to the
wetting transition for «w=2.0 « and has a significantly
slower spreading rate thanN=10. However, for«w=3.0 «,
bothN=40 andN=10 are far from the wetting transition and
both have fast spreading rates.

Figure 11 shows the dynamics of the contact radius of the
precursor foot and the bulk droplet for an equal monomer
mole fraction mixture of polymers of chain lengthN=10 and
40 as well as a mixture ofN=10 and 100 for«w=3.0 « and
gL

s =3.0 t−1. Also shown are the contact radius dynamics for
the corresponding single-component droplets. In general, the
spreading rate of the blend falls between that of the two pure
droplets. For either the foot or the bulk, it does not appear
that the dynamics of the blend is being dominated by either
the N=10 or N=40 polymers in the 10/40 mixture. Similar
results are found for«w=2.0 « and gL

s =10.0t−1. This is in
agreement with earlier simulations[31,34] of blends of chain

length N=8 and N=16 where no significant chain length
effects are observed.

For the 10/100 mixture, both components are in the com-
pletely wetting regime at«w=3.0 «. Here, the contact radius
of the bulk region follows the behavior of theN=100 droplet
more closely than theN=10 droplet. This indicates that the
spreading of the bulk region of the droplet is limited by the
diffusion rate of the larger component. The spreading rate of
the foot is nearly equal to the average spreading rate of the
two pure components, and the precursor foot composition is
about 50% short chain monomers, the same as in the bulk.
As found for the 10/40 blend; there is no measurable segre-
gation for the more energetic surface. The case where one
component wets the surface and the other does not will be
examined in more detail in a future paper where we also
study the effect of varying«w for two components with the
same chain length.

The three spreading models are fit to the contact angle
data for a blend ofN=10 andN=40 polymers and for a
blend ofN=10 andN=100 polymers. The fitting parameters
and associated errors are given in Table II. In every case,z0
from the kinetic model is between that of the corresponding
pure component systems. The hydrodynamic model gives a
value for a that agrees very well with the pure component
system of the larger chain length. The 10/100 mixture is fit
much better by the combined model than by either the ki-
netic or hydrodynamic models, possibly due to a mixture of
slow and fast dynamics from the two chain lengths.

V. VELOCITY DISTRIBUTION

To analyze the droplet spreading dynamics in greater de-
tail, we consider the velocity distribution inside the droplet
and along the precursor foot. The velocity at a given position
in the droplet is obtained by generating a histogram of the
instantaneous velocities of the monomers. To eliminate the
random fluctuations of the atomic velocities, we average 500

FIG. 10. (Color online) Snapshots of the spreading binary drop-
let containing 352 000 monomers of a mixture ofN=10 andN
=40 polymers. The images are taken from timet=0 (top), t
=40 000t (middle), and t=80 000t (bottom). Monomers fromN
=10 chains are shown in red and monomers fromN=40 chains are
shown in blue.«w=2.0 «, gL

s =10.0t−1.

FIG. 11. Spreading rate of(a) the precursor foot and(b) bulk
droplet radius for a 352 000 monomer mixture ofN=10 andN
=100 polymers(curves shifted upward) and a mixture ofN=10 and
N=40 polymers(lower curves) compared to homogeneous polymer
droplets of the same size. The curves correspond toN=10 (dashed
line), N=40 orN=100 (dotted line), and the 10/40 or 10/100 mix-
ture (solid line). «w=3.0 «, gL

s =3.0 t−1.

HEINE, GREST, AND WEBB III PHYSICAL REVIEW E70, 011606(2004)

011606-8



such histograms over a period of 50t. After generating the
averaged histogram, bins containing less than 50 monomers
are manually removed. Otherwise, these nearly empty bins
would create the illusion of more flow at the surface than is
actually present.

The instantaneous velocity of a homogeneous droplet
composed ofN=40 polymers is shown in Fig. 12. The region
near the edge of the droplet has the highest velocity, while
the monomers at the center of the droplet and near the sub-
strate but not near the edge are almost stationary. This is in
sharp contrast to previously published velocity fields of
spreading droplets[9,10], which show most of the monomers
in the droplet moving at the same speed. In these previous
cases, the droplets started as equilibrated spheres placed just
above the substrate, having a contact angle of 180°. This has
been shown to significantly alter the spreading dynamics of
the droplet even well after it adopts a hemispherical shape
[8], since the transition from a sphere to a hemisphere im-
parts a significant amount of momentum. By starting with
the droplet equilibrated at a contact angle of less than 90°,
we are able to focus on the dynamics induced by the surface
tension driving force and not by the momentum gained by
the droplet coming into contact with the surface.

The velocity distribution of each component of an
equimolar blend ofN=10 andN=100 polymers is shown in
Fig. 13. Instead of averaging the instantaneous velocity over
a short period, the velocity is calculated from the difference

in monomer positions at 20 000t and 40 000t. This more
clearly demonstrates the slight differences in spreading be-
havior for the two chain lengths. Figure 13 shows that the
shorter chains move more rapidly than the longer chains, but
generally exhibit the same behavior. The shorter chains that
are buried in the droplet near the substrate show a strong
tendency to move away from the substrate, whereas the
longer chains show no such tendency even though the shorter
chains are farther from the nonwetting transition than the
longer chains. This is possibly due to the ability of the
shorter chains to diffuse a detectable amount during the
20 000t time period, while the longer chains are consider-
ably slower. Figure 13 also indicates that the radial compo-
nent of the velocity increases as the distance from the center
of the droplet increases. A more detailed analysis of the
source material of the precursor foot shows that the radial
distance traveled by a polymer depends mostly on the initial
radial position of the polymer and not on how near it is to the
droplet surface. Although the highest velocities are found at
the droplet surface, this does not have much influence on the
composition of the precursor foot.

VI. CONCLUSIONS

Using molecular dynamics simulation, we study the
spreading dynamics of one-and two-component polymer
droplets. We apply a cylindrical geometry and demonstrate
that the same qualitative spreading behavior is observed as in
a spherical geometry. We derive spreading models for the
cylindrical geometry based on hydrodynamic and kinetic dis-
sipation mechanisms, and show that hydrodynamic effects
become relevant at shorter time scales in the cylindrical ge-
ometry. We also show that therstd, t1/10 scaling from the
hydrodynamic model and therstd, t1/7 scaling from the ki-
netic model for spherical droplets becomerstd, t1/7 and
rstd, t1/5, respectively, in the cylindrical geometry.

Fitting the models to the spreading data of homogeneous
droplets shows that the best fit is obtained using a combina-
tion of the kinetic and hydrodynamic dissipation mecha-
nisms, although the parameters extracted from the fit do not
agree well with the physical parameters of the system. The
hydrodynamic model fit the data well only for the slowest
spreading and highest viscositysN=100d case studied, indi-
cating that the kinetic dissipation mechanism may be domi-
nating any hydrodynamic effects for the other cases. By in-
creasing the strength of the surface dissipation, we are able
to slow the droplet spreading rate enough for theN=100 for
hydrodynamic dissipation to be significant.

Compared to homogeneous droplets, the spreading of bi-
nary droplets is characterized by the difference in surface
tension, viscosity, and interaction strength between the two
components and with the substrate. In the binary droplet at
equilibrium, the fraction of shorter chains, which have a
lower surface tension, is higher at the droplet surface. How-
ever, the interdiffusion rate is much slower than the spread-
ing rate for the droplets presented here. As a result, no en-
richment of the lower surface tension component is observed
either at the droplet surface or in the precursor foot when
both components wet the surface. In the case that the differ-

FIG. 12. Instantaneous velocity distribution of a homogeneous
droplet after 6000t. N=40, «w=3.0 «, gL

s =3.0 t−1.

FIG. 13. (a) Velocity distribution ofN=10 polymers in a 10/100
binary droplet after 20 000t. (b) Velocity distribution of N=100
polymers in the same droplet.«w=3.0 «, gL

s =3.0 t−1.
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ence in viscosity between the two components is large, the
spreading rate of the bulk region is limited by the spreading
rate of the more viscous component. Otherwise, the spread-
ing rate is roughly equal to the average rate of the two com-
ponents. The single binary system for which the combined
model performed noticeably better than either the kinetic or
hydrodynamic models was the mixture of chain lengthsN
=10 andN=100, possibly due to the combination of fast
dynamics fromN=10 chains and slow dynamics fromN
=100 chains.

By starting with droplets that have a contact angleu
=90° and not with spherical droplets above the substrate, we
are able to focus on the dynamics induced by the driving
forces of droplet spreading and not by the momentum gained
by coming into contact with the substrate. The instantaneous
velocity distribution of the spreading droplet shows that
spreading occurs by the motion of the droplet surface while

the interior of the droplet is almost stationary. For a droplet
composed of an equimolar mixture of short-chain and long-
chain polymers, we find that the shorter chains move more
rapidly than the longer ones near the surface of the droplet.
From the droplet surface, they move downward to the pre-
cursor foot and then outward along the substrate.

Future work will include studying the effects of the inter-
action strength between the two components and the effects
of patterned surfaces.
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